The
company

HOMOGENEITY AND BLENDING

The more advanced your side entry mixer, the more traditional flow patterns it will incorporate into its mixing actions. Multi-directional and dimensional flow patterns have been shown to achieve the most homogeneous solution in the most timely fashion. Here are a few of the traditional patterns that should be combined in a modern side entry mixer:

  • High velocity flow - Increasing the speed of mixing in a side entry mixer creates the energy needed for many of the other types of flows that create homogeneity. Materials with a lower viscosity such as light oils, gasoline and a variety of aqueous solutions require higher velocities than other substances. High velocity is also imprint when mixing substances of vastly different densities.
  • Cross tank flow - Creating a flow that is contrary to the pull of gravity and the resistance held by substances of higher densities creating a floor under low density materials is important for both homogeneity and speed of process. The cross tank flow helps to quickly make substances of highly variant densities, breaking the barriers these substances tend to form against each other if they are allowed to settle into layers.
  • Bottom to top/top to bottom flow - A flow that works with gravity can be used to speed up the other flows that occur within your side entry mixer. The more tank terms that you can create in total, the more effective your mixing efforts will be.
  • Running mixer during pump or filling - If you have materials of extremely variant densities, you may benefit from adding the heavier materials during the operation of the side mixer instead of starting the process with all materials already inside. You help to eliminate the traditional hurdle of stratification, and you have the ability to mix materials of heavier densities at lower levels of power.

Running a high velocity flow, a bottom to top flow and a cross tank flow gives a three dimensional flow state that is optimal for extremely fast, efficient mixing. If you are looking for the most cost-efficient way to quickly blend materials that may give traditional mixers problems, ensuring that your side mixer has this capacity is a great way to improve productivity.

The angles that are used in your side entry mixer also help to optimize the process. If you have the ability to operate your mixer during its pump time, having a mixer cluster that is 22.5° left of your tank inlet is the best position. The angling becomes less important if you are not planning on utilizing the so-called "pump up" time of your mixer.

If you are looking to prevent BS&W buildups, putting a 60° rotation on your swivel angle option will give you optimal performance in this area. Make sure that your swill ball is protected from leakage with a seal that can handle the job on hand.

SELECTING THE PROPER IMPELLER

Choosing the right impeller for the job ensures that you will will achieve the highest efficiency during your mix. The fluid foil impeller has been used by many processes because of its incredibly high thrust to power ratio. This ratio ensures the maximum flow efficiency of the side entry mixer. The fluid foil impeller can also be easily used in parallel to supply the needed flow to larger tanks.

However, you may need to choose an impeller based on an imbalance of characteristics depending on the job that is to be completed. When this is the case, here are the most important aspects of an impeller that you should consider before committing your project..

  • Viscosity – This is always the primary factor that you must consider when you are choosing your impeller, because viscosity is the factor that affects many other aspects of the impeller design. For instance, a hydrofoil impeller is usually best for jobs with lower viscosities. Substances that are more highly viscous may actually benefit from a turbine or axial flow blade. Viscosity also tends to affect the density of substances that are being mixed, which creates further considerations for a job.
  • Tank placement and design - The scale of your mixing tank is an incredibly important consideration when choosing your impeller. First, consider the aspect ratio of the tank. The most efficient mixing usually occurs when this ratio is at unity, or as close as possible to unity. You must also consider where in the design the impeller may be placed. If the impeller is placed improperly, you are sure to get a nonuniform result along with staged flow patterns. Do not mistake the phenomenon of "vortexing" with creating homogeneity in a mix - the wrong impeller will only rotate the substances in your tank rather than really mixing them. The size of your tank should also determine the number of impellers that you use. Lastly, the size of each individual impeller should be considered based upon the intensity that you want to apply to your mix.
  • Impeller construction - Stainless steel is perhaps the most common and popular material used to construct impellers today. Stainless steel resists corrosion, which will naturally decrease the depreciation of your impellers. It is also relatively simple to clean. However, depending on the needs of the job, you may also want to look at titanium, nickel alloys and carbon steel. These metals have properties that are more suited to mixes with certain characteristics, and they may also be coated with different finishes depending on their application.

Sharpe Mixers combine the proven features of the V/N/E Series with the advantages of a pillow block bearing design. You get truly efficient fluid processing plus maximum simplicity of maintenance. Instead of a bearing cartridge, Sharpe Mixers are equipped with pillow block mounted inboard and outboard bearings that permit convenient servicing or replacement of bearings. All bearings, along with the stuffing box, are mounted and aligned in an integral fabricated steel base. No field alignment is required during installation or realignment necessary when bearings are replaced or packing is changed.

FOR MORE INFORMATION ABOUT SHARPEMIXERS, 

PLEASE CONTACT US FOR CHINA LICENSINGbusiness

中文授权

WuHan huideli Environment Protection Equipment CO.,LTD.

42 NANHU AVENUE,

HONGSHAN DISTRICT

WUHAN, CHINA